Estimation of generalized additive models
نویسندگان
چکیده
منابع مشابه
Estimation of propensity scores using generalized additive models.
Propensity score matching is often used in observational studies to create treatment and control groups with similar distributions of observed covariates. Typically, propensity scores are estimated using logistic regressions that assume linearity between the logistic link and the predictors. We evaluate the use of generalized additive models (GAMs) for estimating propensity scores. We compare l...
متن کاملModel-assisted Estimation of Forest Resources with Generalized Additive Models
Multi-phase surveys are often conducted in forest inventory, with the goal of estimating forested area and tree characteristics over large regions. This article describes how design-based estimation of such quantities, based on information gathered during ground visits of sampled plots, can be made more precise by incorporating auxiliary information available from remote sensing. The relationsh...
متن کاملEstimation and Variable Selection for Generalized Additive Partial Linear Models.
We study generalized additive partial linear models, proposing the use of polynomial spline smoothing for estimation of nonparametric functions, and deriving quasi-likelihood based estimators for the linear parameters. We establish asymptotic normality for the estimators of the parametric components. The procedure avoids solving large systems of equations as in kernel-based procedures and thus ...
متن کاملFunctional Generalized Additive Models.
We introduce the functional generalized additive model (FGAM), a novel regression model for association studies between a scalar response and a functional predictor. We model the link-transformed mean response as the integral with respect to t of F{X(t), t} where F(·,·) is an unknown regression function and X(t) is a functional covariate. Rather than having an additive model in a finite number ...
متن کاملMarkov-switching generalized additive models
We consider Markov-switching regression models, i.e. models for time series regression analyses where the functional relationship between covariates and response is subject to regime switching controlled by an unobservable Markov chain. Building on the powerful hidden Markov model machinery and the methods for penalized B-splines routinely used in regression analyses, we develop a framework for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 1990
ISSN: 0047-259X
DOI: 10.1016/0047-259x(90)90083-t